
IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 1

High-Throughput Compression of FASTQ Data
with SeqDB

Mark Howison

Abstract—Compression has become a critical step in storing Next-Generation Sequencing data sets because of both the increasing
size and decreasing costs of such data. Recent research into efficiently compressing sequence data has focused largely on improving
compression ratios. Yet, the throughputs of current methods now lag far behind the I/O bandwidths of modern storage systems.
As biologists move their analyses to high-performance systems with greater I/O bandwidth, low-throughput compression becomes
a limiting factor. To address this gap, we present a new storage model called SeqDB, which offers high-throughput compression of
sequence data with minimal sacrifice in compression ratio. It achieves this by combining the existing multi-threaded Blosc compressor
with a new data-parallel byte-packing scheme, called SeqPack, which interleaves sequence data and quality scores.

Index Terms—Compression, data storage, Next-Generation Sequencing, FASTQ

F

1 INTRODUCTION

THE de facto standard for storing raw data from
Next-Generation Sequencing (NGS) platforms is the

FASTQ format [1], which stores sequence data with
corresponding quality scores. FASTQ, and the related
FASTA format, have also become a standard for data
interchange among bioinformatics tools. Unfortunately,
both FASTQ and FASTA suffer from a limitation inherent
to most ASCII-based formats: poor space efficiency when
storing binary data. Furthermore, their use of variable-
length records inhibits random access.

SeqDB is a file format, compressor and storage tool
for NGS data sets that addresses both of these issues,
reducing storage requirements by as much as 62% and
enabling efficient random access, but without breaking
backward compatibility. SeqDB files can be mounted as
FASTQ files and read by existing tools that expect FASTQ
input.

Many compression methods and file formats for se-
quence data also address one or both of these issues.
However, they favor compression ratio over throughput,
and fail to take advantage of the parallelism avail-
able on modern multi-core CPUs. SeqDB, on the other
hand, achieves similar compression ratios to zlib, but
with considerably better throughput thanks to its use
of threaded parallelism, a byte-packing scheme called
SeqPack, and the high-performance Blosc compression
library.

The poor throughput of existing compression methods
may not be apparent on laptops or workstations where

• The author is with the Center for Computation and Visualization, Brown
University, Providence, RI, 02912.
E-mail: mhowison@brown.edu

c©2012 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

I/O bandwidth is already lower than the compresion’s
throughput. However, on systems where more I/O
bandwidth is available – such as through a RAID array,
SSD drive, or high-performance parallel file system – the
low throughput of existing compression tools is a lim-
iting factor. As more high-performance systems become
available to biologists through avenues like cloud com-
puting and scientific grid computing, high-throughput
storage models like SeqDB will become increasingly
necessary.

SeqDB is available for non-commercial use under an
open-source license from:

https://bitbucket.org/mhowison/seqdb

2 RELATED WORK

SeqDB uses Blosc [2], a high-performance compressor
that was originally developed as part of the PyTables and
carray projects to accelerate memory-bound computa-
tions for algebraic calculations in Python [3]. Blosc can
provide faster-than-memory access to compressed bi-
nary data thanks to two optimization approaches: cache-
aware blocking and parallelization through SIMD vector-
ization and multi-threading [4]. Blosc borrows heavily
from the FastLZ compression library [5].

SeqDB abstracts the storage layer and can be extended
to use any file container or I/O library that provides
block access to arrays of records. Initially, we have
implemented a storage backend with the Hierarchical
Data Format v5 (HDF5) [6], a general-purpose and high-
performance I/O library for scientific data. HDF5 takes
care of many low-level storage details, like laying out
and chunking 2D arrays in the 1D file space and correct-
ing for byte endianness across different architectures.

Motivated by these same benefits of building on top of
an existing I/O library, Geospiza and The HDF Group [7]
created a general-purpose genomics format called Bio-
HDF based on the HDF5 library and compressed with

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2

zlib. It is designed to support a wide range of genomics
data, including variable-length sequences, alignments
and annotations. In contrast, SeqDB’s goals are much
narrower, targetting only fixed-length sequence data.
Internally, BioHDF represents data as either variable-
length 1D concatenated strings or fixed-length 2D arrays
of characters, whereas SeqDB only uses fixed-length 2D
arrays. In our results, we show that modifying BioHDF
to use Blosc compression improves throughput, but that
BioHDF still ranks below SeqDB in both compression
ratio and throughput for storing fixed-length NGS data.

Several projects have improved the compression ratio
beyond what zlib can achieve for sequence data, typ-
ically by leveraging additional assumptions or features
specific to nucleotide sequences. Compression ratio is an
important metric of sequence storage methods because
for large repositories, like the Sequence Read Archive [8],
the growth in submitted NGS data is outpacing the
growth in storage capacity.

Wan and Asai [9] showed that pre-sorting sequences
using radix or quicksort can improve compression ratios
for gzip and bzip2 compression, while also reduc-
ing compression time. These methods, however, were
designed for sequence data where the quality scores
have been removed, and therefore do not suport FASTQ-
formatted data.

G-SQZ, a compression scheme based on Huffman
coding and designed specifically for sequence data by
Tembe et al. [10], also achieves high compression ratios,
but requires interpretation of sequence IDs, and only
supports those from the SOLEXA and SOLiD platforms.
In contrast, SeqDB stores unmodified IDs, and can acco-
modate arbitrary data as long as it is in FASTQ format
and has a fixed sequence length.

The DSRC compressor by Deorowicz and Grabowski
[11] is the closest to SeqDB in terms of both goals and
features. Like SeqDB, DSRC uses blocked storage of
compressed sequences to enable fast random access, sup-
ports arbitrary IDs, and combines sequence and quality
score data prior to compression. In their experiments,
Deorowicz and Grabowski found that no compression
methods could surpass gzip in decompression through-
put. As we will present in our results, SeqDB does
surpass gzip (and DSRC) in both compression and
decompression throughput, by a wide margin.

Although SeqDB cannot achieve compression ratios as
low as DSRC, this loss is offset by a much larger gain in
throughput. In some sense, SeqDB and DSRC have taken
orthogonal approaches to improving gzip compression
of sequence data: whereas DSRC prioritizes low com-
pression ratios, SeqDB prioritizes high throughput.

3 DESIGN
SeqDB is made up of the following utility programs, all
accessible through a common wrapper script:

• seqdb-compress parses an existing FASTQ file,
compresses its data with SeqPack and Blosc, and
stores it to a SeqDB file.

• seqdb-extract decompresses a SeqDB file and
outputs it in FASTQ format to a pipe or file.

• seqdb-profile parses a FASTQ file to generate a
histogram of sequence and ID lengths. These values
are required prior to conversion from FASTQ, since
SeqDB uses fixed dimensions to store sequences and
IDs as arrays.

A C++ API is also available for application developers
who wish to read or write SeqDB files natively.

3.1 Compression with SeqPack and Blosc

SeqDB uses a two-pass compression scheme of SeqPack
followed by Blosc. SeqPack is a byte-packing method
that interleaves nucleotide sequences with their corre-
sponding quality scores. FASTQ represents raw sequence
data inefficiently because it stores each sequence value
as two ASCII bytes: one byte stores 5 possible bases (N,
A, T, C, G) and the other stores a quality score with up
to 41 possible values in most cases. Through SeqPack,
this data is instead represented as a 2D array with
dimensions 5 × 51, requiring only one byte of storage.
SeqPack uses a pair of lookup tables to efficienty convert
between the two-byte FASTQ representation and one-
byte SeqPack representation.

Two encoding tables, enc_base[128] and
enc_qual[128], are indexed by ASCII code and
provide the (x, y) coordinates into the 2D byte array.
These tables are constructed so that bases (N, A, T, C, G)
map to x-coordinates (0..4), and the quality scores map
to y-coordinates (0..50). For example, a base T with
score 29 (ASCII character ‘>’ in Phred+33 encoding) is
encoded as:

enc_base[‘T’]*51 + enc_qual[‘>’] = 0x83

Two decoding tables, dec_base[256] and
dec_qual[256], are indexed by the SeqPack byte
and return the base and the quality score, respectively.
For example, the SeqPack byte 0x83 decodes as:

dec_base[0x83] = ‘T’
dec_qual[0x83] = ‘>’

The lookup tables are pre-computed when SeqPack
is initialized, and are also stored as an attribute in the
HDF5 container, to provide provenance for the compres-
sion operation and recoverability for the data. That is,
even in the abscence of the SeqDB or SeqPack imple-
mentation, the lookup tables stored in the HDF5 file
contain sufficient information to decode the interleaved
sequences and quality scores.

3.2 Block Storage and Buffering

For efficiency, SeqDB maintains an internal buffer so that
compression and decompression can be performed on
an entire block, rather than on individual records. The
block size can be decreased to allow for more efficient
random access (since an entire block must be loaded

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 3

even to read a single sequence), or increased to allow for
more buffering, which may improve contiguous access.
The block size defaults to 16,384 records, but can be over-
ridden by the user. We chose this default value because it
is the block size that achieved the peak decompression
rate for the SeqPack/Blosc compression scheme in the
memory bandwidth test presented below (see Figure 1).

Any storage backend that can provide block access
to a 2D array can be used with SeqDB. Currently, we
use the HDF5 library with chunked 2D arrays, where
the chunk size matches the SeqDB block size. We store
IDs and sequences in separate arrays, which each have
a fixed dimension in the fastest moving direction of the
maximum ID length or maximum sequence length, and
an unlimited dimension in the slower direction.

Although SeqDB isn’t designed to store variable-
length sequences, we note that it will work correctly
when using the maximum sequence length as the fixed
dimension in the 2D array. SeqDB will parse and print
the FASTQ representation with a newline character ter-
minating the sequence line, and will store missing bases
and quality scores as null characters. Although this is
not the most efficient design for storing variable-length
sequences, we will show below that for modest ranges
in sequence length it works reasonably well in practice.

3.3 FASTQ Compability

SeqDB uses named pipes to provide backward compa-
bility with tools that expect FASTQ input. Named pipes
are part of the POSIX standard and can be created on
most modern UNIX operating systems, like Linux and
Mac OS X, using the mkfifo command1.

For ease of use, SeqDB provides a wrapper script that
lets users “mount” a SeqDB file to a path. The mount
script creates a named pipe at the path and spawns a
fastq-extract process in the background to stream
the contents of the SeqDB file in FASTQ format to the
pipe. If the background process ends (for instance, if
a program reading the pipe reaches the end-of-file), it
prints a warning message to the user that the path has
been “unmounted” and removes the named pipe. The
user can also manually unmount the path using the
script.

4 RESULTS

We tested the efficiency of SeqDB and SeqPack against
existing compression methods using a collection of pub-
licly available NGS data sets2, summarized in Table 1.
These data sets were chosen to cover a variety of se-
quencing technologies, read lengths, ID lengths, and
total data sizes (a span of two orders of magnitude).

1. http://pubs.opengroup.org/onlinepubs/009695399/functions/
mkfifo.html

2. All data were downloaded in SRA format and converted to FASTQ
using the command fastq-dump --defline-qual + from the SRA
Toolkit.

Our tests were designed to answer the following three
questions:

1) What is the maximum, in-memory throughput of
SeqPack compared to other compressors?

2) How does the compression ratio, throughput and
random-access latency of SeqDB compare to other
storage models?

3) For real applications, does SeqDB’s backward com-
patibility add any overhead versus reading in a
FASTQ file directly?

4.1 Test System and I/O Bandwidth
All tests were conducted on IBM iDataPlex nodes at the
Brown University Center for Computation and Visual-
ization. The nodes feature dual-socket 6-core Intel Xeon
X5650 2.66 Ghz processors and 96GB of RAM; their oper-
ating system is CentOS 6.3. All programs were compiled
with the Intel compiler suite version 12.1.5 using the
flags -O3 -msse4.2. For all tests, we had exclusive use
of the test node (aside from system processes).

Although these nodes are serviced by a high-
performance GPFS file system, that file system is also
shared by nearly 300 other nodes at the Center, and is
therefore subject to large variations in bandwith because
of contention with other users’ jobs. This makes any
kind of I/O-sensitive timing difficult. Because of the
large RAM footprint of the nodes, we decided to instead
conduct all I/O out of the node’s /dev/shm RAM disk.
Using repeated calls to the cat command to redirect
each of the data sets to a new file, we measured bidirec-
tional bandwidths ranging from 1542MB/s to 1728MB/s.

These bandwidths are on par with the typical band-
widths we see on the Center’s GPFS file system, which
have ranged between 1GB/s to 2GB/s (unidirectional)
on daily benchmarks run over the past two years. Band-
widths on the order of GB/s are also representative
of the peak bandwidths available on high-performance
parallel file systems at major supercomputing centers,
for example 35 GB/s on Hopper at the National Energy
Research Scientific Computing Center3 or 15-20 GB/s on
Intrepid at the Argonne Leadership Computing Facility4.

4.2 Threading and Block Size
Both Blosc and SeqPack use threaded parallelism. Blosc
explicitly manage a pool of worker threads with the
pthreads library, and SeqPack implicitly parallelizes
its inner packing and unpacking loops with OpenMP
parallel for directives. For both, we allocated 12
threads to match the 12 cores available on the test nodes.

We pinned OpenMP threads to cores using the
KMP_AFFINITY environment variable provided by the
Intel OpenMP library, and found that while this did not
change the peak performance, it led to less variability in

3. http://www.nersc.gov/users/computational-systems/hopper/
file-storage-and-i-o/

4. http://www.alcf.anl.gov/resource-guides/intrepid-file-systems

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 4

TABLE 1
Test Data Sets

Project Species SRA ID Sequencer Read Count Read Length ID Lengths FASTQ Size

1 Foodborne Pathgen Survey Salmonella SRR493328 Illumina MiSeq 2,031,674 302 bp 64–72 1,317 MB
2 1000 Genomes Human ERR000018 Illumina GA 9,612,363 36 bp 49–60 1,235 MB
3 1000 Genomes Pilot Human SRR003177 LS 454 GS FLX Titanium 1,504,571 45–4398 bp 38–45 1,701 MB
4 Ion Torrent Bias Experiment E. coli SRR611141 Ion Torrent PGM 4,853,655 6–406 bp 24–37 1,637 MB
5 Maize HapMap II Z. mays SRR448020 Illumina GA IIx 19,030,772 172 bp 48–62 7,412 MB
6 1000 Genomes Human SRR493233 Illumina HiSeq 2000 43,280,168 200 bp 60–70 19,557 MB

256KB

1M
B

4M
B

16M
B

64M
B

256M
B

1GB

FASTQ Bytes in Buffer

0

2

4

6

8

10

12

T
h
ro

u
g
h
p
u
t

(G
B

/s
)

Compress

256KB

1M
B

4M
B

16M
B

64M
B

256M
B

1GB

FASTQ Bytes in Buffer

Decompress

memcpy

SeqPack

SeqPack/Blosc

Blosc (level=4)

zlib (level=6)

1K 4K 16K 64K 256K 1M 4M

Records in Buffer
1K 4K 16K 64K 256K 1M 4M

Records in Buffer

Fig. 1. In-memory throughputs for several compression schemes applied to buffers with increasing numbers of
records. Each FASTQ record is 256 bytes.

measured throughputs. Therefore , we also pinned the
Blosc threads by modifying the source code to include
the Linux pthread_setaffinity_np() system call.

For the tunable SeqDB block size parameter, we used
the default size of 16,384 records for the compression
ratio and throughput tests. For the latency tests, we used
a smaller block size of 1,024 records.

4.3 In-memory Throughput

To determine the maximum, in-memory throughput of
zlib (version 1.2.3, with compression level of 6), Blosc
(version 1.1.5, with compression level 4) and SeqPack
(version 0.2.0), we loaded increasingly larger subsets of
FASTQ data into a memory buffer, timed its compression
into a second buffer, then timed the decompression back
into the first buffer. We repeated each of these tests 100
times and kept the minimum runtime, which represents
the best-case scenario when background noise from sys-
tem processes was at its lowest.5 As a baseline, we also
performed a memcpy of the first buffer to the second,
which measures the bidirectional memory bandwidth of

5. The zlib condition was so much slower that its runtime had little
variability, and we only repeated it 4 times.

the system. We calculated throughput as the size of the
original, uncompressed block divided by runtime.

For these tests, we used a filtered version of the
SRR493233 data set downloaded directly from 1000
Genomes rather than SRA. It has reads of length 100 bp,
and we truncated the IDs to 56 characters so that records
were stored with 256 bytes (100 bytes for sequence and
quality score data, and 56 bytes for the ID header). This
allows for an easier comparison between record count
and FASTQ bytes, since 4 records correspond to 1 KB. We
tested buffer sizes on a logarithmic scale from 256KB to
1GB (corresponding to 1K to 4M records), reading each
buffer from the beginning of the input FASTQ file.

Our test program is included with the SeqDB source
code, and was instrumented with the Performance Ap-
plication Programming Interface (PAPI, version 4.1.3.0)6

to measure elapsed runtime and performance counter
data for L3 cache utilization. We placed the timers so as
to exclude the cost of thread creation, and also wrote 32
MB of random data on each thread in between every
trial to flush the L3 cache on both CPU sockets. All
buffers were allocated on NUMA node 0 using the
numa_alloc_onnode() call from the Linux libnuma

6. http://icl.cs.utk.edu/papi/

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 5

L3#Cache#Miss#Rate

memcpy 49% 49% 50% 63% 87% 91% 99% 99% 99% 99%

SeqPack
Compress

48% 48% 48% 56% 81% 81% 86% 90% 99% 99%

SeqPack
Decompress

46% 47% 48% 53% 81% 82% 87% 91% 99% 99%

1MB 2MB 4MB 8MB 16MB 32MB 64MB 128MB 256MB 512MB

L3 Cache Miss Rate

FASTQ Bytes in Buffer

Fig. 2. For memcpy and SeqPack, cache misses transition
from around 50% to 99% between the 4 MB and 32 MB
buffer sizes, as the buffers become too large to fit in L3
cache.

library, to mitigate any variability from non-uniform
memory access across the sockets.

Figure 1 shows how throughput varies with block size
for both SeqPack and Blosc, and how both were able to
achieve higher throughput than memcpy in many cases,
thanks to their compression of the buffer. In contrast,
zlib displayed a constant throughput across block sizes
that never rose above 6.4 MB/s for compression or 166.8
MB/s for decompression.

Blosc attained a maximum throughput of 5.8 GB/s for
decompression, but its highest compression throughput
was only 1.8 GB/s. These results are comparable to those
reported in synthetic benchmarks for Blosc for similar
Intel processors.7

SeqPack’s throughputs were higher than those of both
Blosc and memcpy at all buffer sizes, reaching 8.6 GB/s
for compression and 9.4 GB/s for decompression. The
peaks at the 4 MB and 8 MB buffers seen for both
SeqPack and memcpy correspond to an inflection point
in the percentage of L3 cache misses (see Figure 2), so we
suspect this is an artifact of the memory hierarchy. Each
X5650 CPU has a shared L3 cache of 12 MB, so the 8 MB
buffer is probably the last buffer size where both the read
and write buffers can fit in the caches simaultaneously.

Finally, we also tested a SeqPack/Blosc condition in
which we compressed the buffer with SeqPack followed
by Blosc, then decompressed with Blosc followed by
SeqPack. Not surprisingly, with the extra round of com-
pression and decompression, this condition performed
worse than either SeqPack or Blosc alone. Yet, it still
outperformed zlib while yielding similar compression
ratios, as we will report in more detail in the next section.

4.4 Compression Ratio and Throughput

Compression methods face a trade-off between through-
put and compression ratio. Additional processing, and
hence lower throughput, can improve compression ratio.
Some methods, like Blosc and zlib, have a tunable
parameter for controlling this trade-off, called the com-
pression level.

7. http://blosc.pytables.org/trac/wiki/SyntheticBenchmarks

We tested SeqDB (version 0.2.0) with SeqPack/Blosc
compression against four alternative methods for com-
pressing NGS data sets. The most commonly used
method is probably gzip (which uses the same compres-
sion algorithm as zlib). We ran gzip at compression
level 6 since this is the default level if none is specified
on the command line, and we suspect this is the most
common usage. Next, we tested BioHDF (version 0.4a)
with its default HDF5 zlib compression filter, and a
modified version in which we replaced this with the
Blosc filter. Details on how to register the Blosc filter
with HDF5 are provided in the Blosc documentation,
and the changes required modifying less than 10 lines of
code in BioHDF. For all Blosc-based methods, we used a
compression level of 4, which we found to offer the best
compromise between throughput and compression ratio
after conducting a parameter sweep on the ERR000018
data set. Finally, we tested DSRC (version 1.02), which
is designed specifically for compressing FASTQ data.

For each compression methods, we loaded each of the
data sets from Table 1 into the RAM disk, compressed
it, and decompressed the output of the compression (to
validate correctness, we also ran a diff on the original
file and the output of the decompression). We measured
the times to compress and decompress and divided
by the original file size to calculate throughputs. We
measured the size of the compressed output and divided
by the original file size to calculate compression ratio.

Figure 3 shows the results of the comparison. Al-
though SeqDB did not achieve the best compression ratio
(DSRC wins on ratio alone), it does strike the best com-
promise between throughput and ratio. In compression,
SeqDB was 25× to 89× faster than gzip, yet achieved
within 69% to 85% of the compression ratio. Although
DSRC achieved the best compression ratio on every data
set, it did so at a cost of 2.4× to 10.8× longer runtimes
than SeqDB.

In decompression, gzip performed noticeably better,
and was slower than SeqDB by only 1.8× to 7.0×.
In contrast, DSRC was slowest in decompression, and
SeqDB outperformed its throughput by 3.2× to 14.2×.
We would argue that the decompression comparison
is the more important of the two, since an NGS data
set will likely be compressed once when archived, but
decompressed many times as it is reused in subsequent
analyses.

BioHDF faired worst of all the methods, both
in terms of compression ratio and throughput. The
Blosc-modified BioHDF showed some improvement in
throughput, but at the cost of poorer compression ratio.

SeqDB’s throughput was lowest for the data sets with
variable-length sequences. Its compression ratio faired
well in these cases, though, considering it is backed
by a fixed-length array. For the shorter sequences, the
space wasted by the fixed-length represention was likely
mitigated by Blosc’s efficient compression of all the
repeated null characters.

Overall, SeqDB delivered compression on par with

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 6

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

Compression Ratio

0

100

200

300

400

500

600

T
h
ro

u
g
h
p
u
t

(M
B

/s
)

1

11

1

1

2

22
2

2

3

3

3

4

44

4

4

5

55

5

5

6

66

6

6

Compress

SeqDB (SeqPack/Blosc)

BioHDF (zlib)

BioHDF (Blosc)

gzip (level=6)

DSRC

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

Compression Ratio

1

1
1

1

1

2

22

2

2

3

3

3

4

44

4

4

5

55
5

5

6

66 6

6

Decompress

Fig. 3. Plotting compression ratio against throughput shows the trade-off inherent to compression methods: longer
processing times (less throughput) often yield better ratios. SeqDB, however, negotiates this trade-off better than other
methods, achieving higher throughputs relative to its compression ratio, and occupying the upper-right quadrant of the
scatter plot. The methods in the lower-right quadrant favor ratio over throughput, and those in the lower-left quadrant
are poor at both. Points are labeled by data set number (see Table 1). We were unable to compress the SRR003177
data set (#3) with BioHDF due to an error.

SRR493328 ERR000018 SRR003177 SRR611141 SRR448020 SRR493233

Data set

0.001

0.01

0.1

1

10

100

1000

M
ill

is
e
co

n
d
s

Random access times

SeqDB

DSRC

Fig. 4. Box-and-whisker plots show the distribution of
latencies for reading 1000 individual records at random
from each data set stored in SeqDB and DSRC formats.
The median access time (shown as a black bar) for
SeqDB is under 1ms for all data sets.

gzip, but at much higher throughputs. In addition,
SeqDB is a structured, array representation of the se-
quence data, which enables fast random access (even
in decompression, since the file is stored in blocks).
BioHDF and DSRC provide this same benefit, but their
throughputs were far below SeqDB’s.

4.5 Random-Access Latency
One advantage of storing sequence data as a fixed-
dimension array is that random access becomes an O(1)

operation (rather than O(n) for variable-length storage).
To measure this constant cost for random access, or
the latency, we generated a list of 1000 record indices
chosen from a uniform random distribution (without
replacement), and loaded each record from both SeqDB
and DSRC files for each data set. The test program is
included in the SeqDB source code and we used the
Linux gettimeofday() system call to measure elapsed
time.

Although DSRC has exhibited random access times of
less than 10ms [11], we were unable to reproduce this
result, and the lowest latency we measured for DSRC
was instead 11.0ms. This discrepancy could be caused
by several factors, such as differences in the data sets
tested, in the test hardware, or in the compilers and flags
used.

Figure 4 shows the distribution of latencies across the
1000 trials for each data set. For all data sets but the
largest (SRR493233), some of the random indices were
close enough that the same block was re-read, leading
to the outlier latencies as low as 1µs for DSRC. This did
not occur for the largest data set, however, where the
probability of a re-read is smaller since there are more
indices, but the same block size. Across all data sets, the
median access time for SeqDB was under 1ms and as
low 0.13ms. For DSRC, the median access times ranged
from 18.9–273.3ms.

Since both SeqDB and DSRC must read and decom-
press an entire block to access a single record, the latency
correlates with the sequence length, with the worst

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 7

SRR493328 ERR000018 SRR003177 SRR611141 SRR448020 SRR493233

Data set

0

60

120

180

240

300

360

420
S
e
co

n
d
s

Read time for velveth
FASTQ

SeqDB (mounted)

gzipped FASTQ

SeqDB (native)

Fig. 5. Comparison of input methods for velveth, the
read stage of the Velvet assembler. Reading a mounted
SeqDB file introduces a 16% to 46% overhead versus
reading FASTQ directly, while gzipped FASTQ introduces
a 56% to 70% overhead. Mounted SeqDB is faster than
gzipped FASTQ for all data sets. Native SeqDB reads
were faster than uncompressed FASTQ for all data sets
except SRR003177.

latencies occuring for the LS 454 data set (SRR003177).

4.6 Overhead of FASTQ Compatibility
One impediment to creating a new storage model for
sequence data is that it won’t initially be supported by
the large ecosystem of bioinformatics tools that already
exist. SeqDB addresses this by presenting a virtual rep-
resentation of its contents in FASTQ format through a
named pipe, as described in Section 3.3. To validate this
compatibility mechanism with a real-world application,
and to measure its overhead, we ran the first stage of
the Velvet de novo genome assembler [12] on FASTQ,
mounted SeqDB, and gzipped FASTQ versions of each
of the test data sets. We also modified the Velvet source
code to add support for reading SeqDB files natively by
calling the SeqDB API.

The first stage of Velvet, a program called velveth,
constructs the full de Bruijn graph used in the assembly.
To do this, it reads in all of the input sequences (and
reports the total read time), hashes them, and stores them
to an internal graph representation.

Figure 5 shows the measured read times for each
input format and data set. SeqDB’s compatibility mode
introduces a 16% to 24% overhead for the Illumina and
Ion Torrent data sets, and a 49% overhead for the LS 454
data set. When compared to directly reading a FASTQ
version of the same data set, SeqDB is faster than gzip
for all data sets, by as much as 46% for the largest data
set, SRR493233. Natively reading the SeqDB file is even
faster than reading the uncompressed FASTQ file for all
data sets but SRR003177.

5 CONCLUSION
SeqDB provides an efficient storage model for the raw
data produced by NGS platforms like the Illumina HiSeq

2000 and MiSeq and Life Technologies Ion Torrent PGM.
Through its backward compatibility mode, it can be in-
tegrated with existing bioinformatics tools and pipelines
that expect FASTQ input. In performance comparisons
against other compression methods, SeqDB is the clear
winner in terms of throughput, and it offers favorable
compression ratios as well. Thus, it is an ideal storage
model for archiving raw NGS data.

SeqDB could, however, achieve better compression
ratios by extracting only the information in the header
that changes between reads. For example, the Illumina
CASAVA 1.8 headers for a given lane only vary by flow
cell coordinates, forward/reverse orientation, and mask.
Unfortunately, in initial testing with SeqPack, we found
that the cost of parsing the header on packing, and
formatting the header on unpacking, led to considerable
deterioration in throughput. Also, supporting this kind
of extraction would require writing a different extrac-
tion method for each NGS platforms’ header format.
However, storing the extracted information instead of a
header string may benefit analysis tools that make use of
the flow cell coordinates, since those tools would already
need to perform the extraction.

Although it isn’t designed for variable-length se-
quences, we showed that SeqDB can compress data
sets with small variations in sequence length reasonably
well. This scenario is common with Illumina HiSeq data,
where there is a bias toward low quality at the end
of the reads, and the last 1 to 10 base pairs (1% to
10% of the sequence) may be trimmed during a quality
control phase. The variable-length sequences we tested
(from LS 454 and Ion Torrent PGM data sets) had even
more extreme ranges than this, so we expect that quality-
trimmed HiSeq data would compress well with SeqDB.
However, we leave the testing of quality-trimmed data
to future work, since we plan to incorporate SeqDB into
analysis pipelines that conduct such filtering on HiSeq
data, in particular through the BioLite [13] framework
that we are actively developing. For large variations
in length, such as in the contig output of a de novo
assembly, SeqDB is clearly a poor choice, but such data
sets typically lack quality scores, are much smaller than
sequence read data sets, and lie outside the scope of
SeqDB.

Finally, SeqDB’s modular storage backend is de-
signed to extend to I/O libraries other than HDF5. We
plan to investigate how an indexed database, such as
SQLite, could enable efficient ID querying in SeqDB,
and whether a database backend could provide the same
high-throughput for sequential access as HDF5 provides.

ACKNOWLEDGMENTS

The author would like to thank Quincey Koziol and
Dana Robinson of the HDF Group and Fransesc Alted
for their feedback. This research was conducted using
computational resources and services at the Center for
Computation and Visualization, Brown University.

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 8

REFERENCES
[1] P. J. A. Cock, C. J. Fields, N. Goto, M. L. Heuer, and P. M. Rice,

“The Sanger FASTQ file format for sequences with quality scores,
and the Solexa/Illumina FASTQ variants,” Nucleic Acids Research,
vol. 38, no. 6, pp. 1767–1771, Apr. 2010.

[2] F. Alted, “BLOSC,” 2009. [Online]. Available: http://blosc.
pytables.org/

[3] F. Alted, I. Vilata et al., “PyTables: Hierarchical Datasets in
Python,” 2002. [Online]. Available: http://www.pytables.org/

[4] F. Alted, “Why modern CPUs are starving and what can be done
about it,” Computing in Science & Engineering, vol. 12, no. 2, pp.
68–71, 2010.

[5] A. Hidayat, “FastLZ - lightning-fast compression library,” 2007.
[Online]. Available: http://fastlz.org

[6] The HDF Group, “Hierarchical Data Format version 5,” 2000.
[Online]. Available: http://www.hdfgroup.org/HDF5/

[7] C. E. Mason, P. Zumbo, S. Sanders, M. Folk, D. Robinson, R. Aydt,
M. Gollery, M. Welsh, N. E. Olson, and T. M. Smith, “Standardiz-
ing the Next Generation of Bioinformatics Software Development
with BioHDF (HDF5),” in Advances in Computational Biology, H. R.
Arabnia, Ed. Springer New York, 2010, vol. 680, pp. 693–700.

[8] R. Leinonen, H. Sugawara, and M. Shumway, “The Sequence
Read Archive,” Nucleic Acids Research, vol. 39, pp. D19–D21, Jan.
2011.

[9] R. Wan and K. Asai, “Sorting next generation sequencing data im-
proves compression effectiveness,” in Proceedings of the 2010 IEEE
International Conference on Bioinformatics and Biomedicine Workshops
(BIBMW), 2010, pp. 567–572.

[10] W. Tembe, J. Lowey, and E. Suh, “G-SQZ: compact encoding of
genomic sequence and quality data,” Bioinformatics, vol. 26, no. 17,
pp. 2192 –2194, 2010.

[11] S. Deorowicz and S. Grabowski, “Compression of DNA sequence
reads in FASTQ format,” Bioinformatics, vol. 27, no. 6, pp. 860–862,
Mar. 2011.

[12] D. R. Zerbino and E. Birney, “Velvet: Algorithms for de novo short
read assembly using de bruijn graphs,” Genome Research, vol. 18,
no. 5, pp. 821–829, 2008.

[13] M. Howison, N. A. Sinnott-Armstrong, and C. W. Dunn, “BioLite,
a lightweight bioinformatics framework with automated tracking
of diagnostics and provenance,” in Proceedings of the 4th USENIX
Workshop on the Theory and Practice of Provenance (TaPP ’12), Jun.
2012.

Mark Howison received the master’s degree in
Computer Science from the University of Califor-
nia, Berkeley in 2009. He has worked as a Com-
puter Systems Engineer for Lawrence Berkeley
National Laboratory’s Visualization Group, and
currently as an Application Scientist at Brown
University’s Center for Computation and Visu-
alization. His research interests include compu-
tational biology, scientific and high-performance
computing, visualization, performance tuning
and parallel I/O.

