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ABSTRACT
Motivation: Draft de novo genome assemblies are now available
for many organisms. These assemblies are point estimates of the
true genome sequences. Each is a specific hypothesis, drawn
from among many alternative hypotheses, of the sequence of a
genome. Assembly uncertainty, the inability to distinguish between
multiple alternative assembly hypotheses, can be due to real variation
between copies of the genome in the sample, errors and ambiguities
in the sequenced data, and assumptions and heuristics of the
assemblers. Most assemblers select a single assembly according to
ad hoc criteria, and do not yet report and quantify the uncertainty of
their outputs. Those assemblers that do report uncertainty take very
different approaches to describing multiple assembly hypotheses and
the support for each.
Results: Here we review and examine the problem of representing
and measuring uncertainty in assemblies. A promising recent
development is the implementation of assemblers that are built
according to explicit statistical models. Some new assembly methods,
for example, estimate and maximize assembly likelihood. These
advances, combined with technical advances in the representation
of alternative assembly hypotheses, will lead to a more complete and
biologically relevant understanding of assembly uncertainty. This will
in turn facilitate the interpretation of downstream analyses and tests
of specific biological hypotheses.
Contact: mhowison@brown.edu

1 INTRODUCTION
The low cost and increasing availability of Next-Generation
Sequencing (NGS) data have driven a growing interest in methods
and software tools for de novo genome assembly of short read
sequences. Recent surveys of assembly tools (Miller et al.,
2010; Finotello et al., 2012), practical guides (Paszkiewicz and
Studholme, 2010; Nagarajan and Pop, 2013), competitions like
the Assemblathon (Earl et al., 2011; Bradnam et al., 2013), and
benchmarking tools like GAGE (Salzberg et al., 2012) highlight
the diverse ecosystem of available assemblers. New data structures,
algorithms, and software tools for assembly continue to be
published every month.
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Many investigators have claimed that it is now possible to
assemble high quality genomes from NGS data when using
appropriate protocols and assembly methods (Y. Li et al., 2010;
Schatz et al., 2010; Gnerre et al., 2011). Yet, others have
expressed concern over the integrity of publicly available draft
genomes assembled from such data. Some have described errors
and shortcomings in specific draft assemblies (Salzberg and Yorke,
2005; Alkan et al., 2011; Ricker et al., 2012), while others have
questioned the quality of publicly available draft assemblies in
general, and advocated better quality standards for the community
(Mardis et al., 2002; Chain et al., 2009). In particular, the
Assemblathon 2 competition (Bradnam et al., 2013) found large-
scale inconsistencies among current assembly methods, suggesting
they are not robust to changes in parameters and input data, and that
there is a need for unambiguous measures of assembly uncertainty.

A genome assembly is a hypothesis consisting of a collection
of contigs (contiguous sequences) and scaffolds (groups of contigs
with gaps of known length between them) that typically cover 90%
or more of the genome (Chain et al., 2009), but are often fragmented
and unordered. Current de novo assemblers use various heuristics
and algorithms to select an assembly that optimizes some criteria,
such as path length or graph complexity (Miller et al., 2010);
however, these optimization criteria are typically ad hoc. This is
largely due to the computational difficulty of performing assembly
on short reads, and a primary goal for existing assembly methods
has been computational tractability and efficiency. As a result,
assemblers choose a single, point estimate as their final output
with sparse information about the quality, certainty, or validity of
the chosen assembly, or of alternative assembly hypotheses (many
of which may have almost as much support). In most cases, it is
difficult, if not impossible, to answer even basic questions like,
“How well is this contig supported by the read sequences?” or
“Are there alternative assemblies that have similar support from the
data?”

Downstream analysis tools use assemblies to make their own
point estimates of other aspects of biology, such as multiple
sequence alignments, differential gene expression analyses, or
phylogenetic trees. In the end, there is no accounting for how the
uncertainty is compounded at each stage. Existing tools cannot be
integrated into pipelines that propagate uncertainty through a large
multistep analysis, for example integrating assembly uncertainty
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with tree uncertainty when constructing phylogenies. The ability
to propagate uncertainty about point-estimates or, preferably, to
propagate entire sets of multiple alternative hypotheses will become
increasingly important as analyses grow in complexity.

Thanks to the progress on computational efficiency of genome
assembly, it is now possible to tackle the difficult goal of placing
de novo sequence assembly within an explicit statistical framework.
In such a framework, single assembly hypotheses selected according
to ad hoc optimality criteria are replaced by sets of hypotheses
accompanied by statistics that summarize confidence in each.

2 VARIANTS IN ASSEMBLIES
Alternate assembly hypotheses are called variants. There are many
types of variants, but they fall into two broad categories that we refer
to as hard and soft:

Hard variants correspond to real differences present in the sample.
Hard variation can include heterozygosity, somatic polymorphism
(as in the case of cancer), polymorphism across multiple
individuals when they are pooled for sequencing, or variation
across individuals when they are sequenced and assembled
separately but data are then combined across assemblies. Hard
variants reflect aspects of organism biology that may or may not
be of direct interest to the investigator.

Soft variants are uncertainties that are introduced during the
sequencing and assembly process, and include library preparation
artifacts and sequencing errors. They persist when there isn’t
enough information to resolve conflicts and identify the true
assembly. Soft variants are nuisances that investigators seek to
reduce or work around.

Discerning between hard and soft variants presents difficult
statistical and computational challenges, and is a fundamental
difficulty for metagenome assembly in particular (Charuvaka and
Rangwala, 2011). Although hard and soft variants have very
different origins, they can both be described within a common
statistical framework since they both result in multiple assembly
hypotheses. After this common framework is in place, the next
challenge will be to differentiate between hard and soft variants,
either by eliminating soft variation, or by learning to identify each.
However this is ultimately addressed, the very existence of hard
variation is a direct challenge to the expectation that there is a single
true assembly that accurately represents an organism’s genome.

One of the best-studied types of hard variation is heterozygosity
in diploid individuals. Provided enough depth of coverage, existing
statistical methods can accurately identify alleles (Nielsen et al.,
2011). In the absence of enough coverage, though, it becomes
difficult to differentiate true alleles from sequencing errors. The
identification of alleles from different loci that are co-located
on the same chromosome is called haplotype phasing. Phasing
can be achieved computationally or experimentally (Browning and
Browning, 2011). Computational phasing requires population level
sampling, which is uncommon in most studies of de novo genome
assembly. Experimental phasing relies on laboratory techniques
that are applied during data generation, such as developing fosmid
libraries or separation of chromosomes. This approach incurs higher
costs and it usually involves additional computational phasing
when phased haplotype fragments must be pieced together into

larger haplotypes (Browning and Browning, 2011). At present,
phase information from sequencing reads is not sufficient to fully
determine haplotype phase.

3 RECORDING VARIANTS
Some assemblers report variants in their output, though without
any accompanying statistical interpretation or distinction between
hard and soft variants. Although much of the focus has been on
tools for single nucleotide polymorphism (SNP) detection, there is
interest in larger-scale structural variants as well. Preserving and
reporting ambiguities in the assembly is an important step towards
assessing assembly uncertainty, especially if future computational
methods can incorporate alternative assemblies. Assemblers that
report variants include:

ALLPATHS-LG (Gnerre et al., 2011) has a custom intermediate
output format for SNPs or homopolymers. For example,
the output sequence TC{A,T}GG represents a SNP, and
TT{,T,TT}AC represents a homopolymer. The authors note that
making use of this information in downstream analyses is an
important challenge for the field.

SGA (Simpson and Durbin, 2012) retains variants that aren’t
selected by the assembly algorithm, but instead of storing them
in a custom format, writes them to a separate FASTA file that can
be inspected after assembly.

ABySS (Simpson et al., 2009) similarly writes multiple variants
and organizes them into two FASTA files, one for SNPs and the
other for insertions-deletions (indels).

Cortex (Iqbal et al., 2012) and fermi (H. Li, 2012) are both
designed to discover variants during assembly. Both show that
structural variant detection can be improved by discovering
variants during assembly rather than through simply mapping the
assembly to a reference genome.

In addition to advances in the assemblers themselves, there
have also been improvements in data formats. The FASTG (Jaffe
et al., 2012) specification addresses the problem of storing complex
polymorphisms and variants by using a graph representation for
assembly output. Most assemblers’ final output uses a linear FASTA
representation, with a record for each contig or scaffold sequence.
While this format is compact, human-readable, and a suitable
representation of a correct, unambiguous assembly, in practice most
assemblies include ambiguities that can’t be represented linearly.
At the opposite extreme of the linear FASTA representation is the
intermediate output provided by most assemblers that dumps out
the complete unresolved graph structure produced during assembly.
For most downstream applications, this output is too verbose and
too raw: it might not even include the graph traversals chosen by the
assembler’s heuristics or algorithms as the final assembly.

FASTG attempts a balance between these two extremes. It is an
extension of the approach taken by ALLPATHS-LG, and specifies
“constructs” enclosed in brackets that can be inserted into a typical
FASTA sequence to represent local non-linear features like gaps,
alleles, tandem repeats, or haplotypes. For example, the sequence
GANNNNN[5:gap:size=(5,4..6)]CAGGC[1:alt:allele|C,G]

includes constructs for both a gap of 4 to 6 bases and a SNP with
a similar proportion of C and G bases, which can therefore be
interpreted as an allele.
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Another example of a richer description for assembly output is
the “gene graph,” introduced by the GeneStitch (Wu et al., 2012)
method for reconciling and improving metagenomic assemblies.
Using alignments against a reference genome, GeneStitch identifies
clusters of gene fragments that are highly similar across the
individual genomes within the metagenome. Instead of trying to
separate the individual genes, GeneStitch merges them into a
structure called a gene graph, which is a subgraph of the assembly
graph that connects all the similar gene fragments. The gene graph
is a condensed representation of the similar genes, and individual
genes can be reconstructed by traversing paths through the gene
graph.

Another middle ground between linear representation and full
assembly graph output is to simply enumerate the full set of possible
assemblies, the approach that the SGA assembler takes when it
writes alternative contigs to an auxiliary file. This is analogous to
the approach taken by phylogenetic inference tools that generate sets
of phylogenetic trees. An investigator will typically construct and
report a consensus tree, which is a lossy summary of the full set of
trees according to some statistical justification (Holder et al., 2008).
Similarly, an assembler could output the full set, but construct a
consensus assembly for each contig. The full set of assemblies is
inherently redundant, and could be compressed with generic text
compression tools, like gzip.

Although these representations are better suited to storing the
variation in assembly output than FASTA, they do not address
the statistical or computational problem of how to quantify the
uncertainty of a given assembly hypothesis. We discuss existing
approaches to these problems below.

4 MIS-ASSEMBLY APPROACHES
Earlier efforts to automate assembly validation successfully applied
statistical tests to identify “mis-assemblies,” or regions of an
assembly hypothesis that violate specific statistical assumptions.
For instance, the amosvalidate tool (Phillippy et al., 2008) uses
the compression-expansion (CE) statistic (Zimin et al., 2008) to
identify regions of an assembly where paired-end reads align with
insert sizes that deviate from an expected normal distribution.
It also calculates statistics based on the overall read coverage,
the distribution of k-mers, and the presence of fragmented read
alignments.

More recently, the Recognition of Errors in Assemblies using
Paired Reads (REAPR) tool (Hunt et al., 2013) applied similar
metrics of fragment coverage and insert-size distribution to identify
mis-assembled regions, and introduced the ability to call errors
at specific bases in an assembly hypothesis. Computationally,
it decides which individual bases are “error-free,” meaning that
the base is supported by a specified number (by default 5) of
perfectly and uniquely aligned reads, and that the difference
between the theoretical and observed fragment coverage falls below
a dynamically inferred threshold. Regions with erroneous bases
are reported as mis-assemblies. The algorithm also distinguishes
between contig and scaffolding errors, and can produce a new
assembly where erroneous scaffolds are broken into separate
contigs.

5 LIKELIHOOD APPROACHES
In statistics, likelihood is the probability of the data if the data
were generated according to a specified hypothesis. In the context
of assembly, it is the probability of sequencing the observed reads
under a specified assembly hypothesis and model of read generation.

Maximum likelihood estimation attempts to identify the
hypothesis that has the highest probability of producing the
observed data. A maximum likelihood assembly is the assembly that
has the highest likelihood. Maximum likelihood estimation does not
itself provide a confidence interval on any particular hypothesis, it
simply provides a way to find the hypothesis that maximizes the
probability of the data. The assembly with the maximum likelihood
may do a much better job than any other assembly at explaining the
data, or there may be millions of other assemblies that are almost as
likely. Even though a likelihood approach does not directly quantify
assembly uncertainty, it provides an explicit framework with a clear
statistical interpretation for optimizing and evaluating alternative
assembly hypotheses.

The Computing Genome Assembly Likelihoods (CGAL) tool
(Rahman and Pachter, 2013) approximates the likelihood of an
assembly given the sequence reads and a generative model. To
reduce computational burden, read generation is considered only in
the region of the assembly where each read maps. The generative
model incorporates separate terms for the length of a read pair
and its aligned site on the genome, and an error model for SNPs,
insertions and deletions. The generative model has to be learned
from the data. Because the distribution of insert sizes for read
pairs depends on both the sequencer and library preparation, CGAL
uses the empirical distribution for the read pair lengths. For the
distribution of sites, it assumes uniform sampling of read pairs
across the genome. For the error model, it assumes sequencing
errors are independent events and learns the substitution rates for
each position and for each substitution combination (since there
are known biases for some sequencing technologies), and the
insertion and deletion rates for each position in a read sequence. The
aggregate CGAL score for an assembly is the log of the product of
the probabilities that each individual read could have been generated
from the assembly.

Although CGAL isn’t an assembler, it could be applied to
optimizing assembly by using the annotated likelihood score to
iteratively guide the selection of assemblies and parameter values.
In fact, a maximum likelihood genome assembler was already
proposed based on similar principles (Medvedev et al., 2009). Like
CGAL, it calculates likelihood based on the depth of read coverage,
but it does not incorporate paired end information at this stage.
Instead, it takes the approach typical of many genome assemblers of
first assembling the contigs, then resolving conflicts by looking for
contigs that agree with the orientation and insert size of the paired
reads. Also, it requires as a parameter the accurate size of the target
genome, which is not available in all de novo assembly projects.
A related design for maximum likelihood assembly (Varma et al.,
2011) uses a different formulation that starts from an approximate
size and estimates the actual size during the optimization.

One of the limitations of the maximum likelihood approach is that
it relies on complex optimizations that are polynomial time in the
number of read sequences, compared to the linear time algorithms
employed by most de Bruijn graph assemblers. Also, unlike most
assembly methods described in the literature, neither the maximum
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likelihood methods by Medvedev et al. nor Varma et al. provide an
open-source reference implementation.

6 BAYESIAN APPROACHES
Instead of the probability that a given assembly hypothesis could
have generated the sequenced data (i.e., the likelihood), an
investigator may be more interested in the conditional probability
of the assembly hypothesis after taking into account the sequenced
data. This is the posterior probability, P (H|D), of the assembly
hypothesis, and it is related to the likelihood, P (D|H), by the
Bayes’ theorem:

P (H|D) =
P (D|H)(P (H))

P (D)
(1)

where P (D) and P (H) are the prior probabilities on the data and
the assembly hypothesis, respectively. The priors are the probability
distributions that express the uncertainty before the data are taken
into account.

There is already at least one tool that considers posterior
probabilities on assemblies, the Assembly Likelihood Evaluation
(ALE) framework (Clark et al., 2013). ALE implements an
expression for the probability that an assembly is correct, and
also reveals the contribution of local regions of the assembly to
this score. This is an important advance towards assessing the
uncertainty of assemblies, especially since it is made in the context
of an explicit statistical framework rather than ad hoc optimality
criteria. ALE estimates the posterior probability of an assembly
(their P (S|R)) by estimating the prior probabilities (their P (S))
directly from the data (i.e., an empirical Bayes approach) in
conjunction with an approximation of the assembly likelihood (their
P (R|S)) in a similar fashion to CGAL. One of the most difficult
aspects of calculating a posterior probability is deriving the prior
probability of the read data, P (R) (which they denote as Z). They
address this challenge with a rough but efficient approximation of
Z. They then refer to the approximated posterior probability as the
ALE score.

The ALE score is a comparative measure of assembly correctness
and should be compared among assemblies of the same genome
from the same sequenced data. The ALE score can’t be calculated
for different data sets because of the possible inaccuracy in
approximating the prior probability of the data, which cancels out
when computing a comparative score between difference assembly
hypotheses of the same data. In contrast, CGAL could conceivably
be used to compare the likelihood of an assembly hypothesis
against different data sets (for instance, from different sequencing
technologies), because it does not calculate the prior probabilities
of the data.

Markov Chain Monte Carlo (MCMC) is an alternative approach
to approximating posterior probabilities. Rather than approximate
the posterior probability of a particular assembly as ALE does,
an MCMC approach would generate a set of alternative assembly
hypotheses. This provides a natural way to deal with assembly
uncertainty. The frequency of a particular attribute of the assembly
in this set is an approximation of the posterior probability of that
attribute. In addition to deriving this probability, the investigator can
also examine the other alternative hypotheses. An investigator could

ask, for example, “What are the most probable hypotheses for gene
order that together account for 90% of the posterior probability?”

To overcome the challenges of estimating the prior probability on
the data, MCMC uses the ratios of posterior probabilities so that
the prior probability on the data cancels out and does need to be
calculated (for an introduction to MCMC, see Gilks et al., 1996).
MCMC methods have been applied to related problems, such as
assembling the haplotype of resequenced human genomes (Bansal
et al., 2008). However, we do not know of a de novo assembly
method that has employed MCMC to generate a set of assembly
hypotheses. Like maximum likelihood assembly, MCMC assembly
will have significant technical challenges with computational cost
and scalability, because of the many samples needed to construct a
stable posterior distribution.

7 CONCLUSION
The pieces are now falling in place for assembly to move
away from point estimates that are selected according to ad hoc
criteria, towards a statistically explicit framework that provides
not only biologically relevant measures of certainty but also
sets of alternative hypotheses. This will greatly facilitate the
evaluation of assemblies, their application to specific biological
questions, improvements in assembly algorithms, and integration
with downstream analyses that can then take assembly uncertainty
into account. Bioinformatics workflow frameworks, such as the
web-based framework Galaxy (Giardine et al., 2005) and the
lightweight command-line framework BioLite (Howison et al.,
2012), already provide biologists with functionality for establishing
provenance and reproducibility for computational analyses. These
workflow frameworks are the logical foundation for implementing
pipelines that propagate uncertainty through complex, multi-stage
analyses.
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